(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
rev(x) → if(x, eq(0, length(x)), nil, 0, length(x))
if(x, true, z, c, l) → z
if(x, false, z, c, l) → help(s(c), l, x, z)
help(c, l, cons(x, y), z) → if(append(y, cons(x, nil)), ge(c, l), cons(x, z), c, l)
append(nil, y) → y
append(cons(x, y), z) → cons(x, append(y, z))
length(nil) → 0
length(cons(x, y)) → s(length(y))
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
ge(x, 0') → true
ge(0', s(y)) → false
ge(s(x), s(y)) → ge(x, y)
rev(x) → if(x, eq(0', length(x)), nil, 0', length(x))
if(x, true, z, c, l) → z
if(x, false, z, c, l) → help(s(c), l, x, z)
help(c, l, cons(x, y), z) → if(append(y, cons(x, nil)), ge(c, l), cons(x, z), c, l)
append(nil, y) → y
append(cons(x, y), z) → cons(x, append(y, z))
length(nil) → 0'
length(cons(x, y)) → s(length(y))
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
ge(x, 0') → true
ge(0', s(y)) → false
ge(s(x), s(y)) → ge(x, y)
rev(x) → if(x, eq(0', length(x)), nil, 0', length(x))
if(x, true, z, c, l) → z
if(x, false, z, c, l) → help(s(c), l, x, z)
help(c, l, cons(x, y), z) → if(append(y, cons(x, nil)), ge(c, l), cons(x, z), c, l)
append(nil, y) → y
append(cons(x, y), z) → cons(x, append(y, z))
length(nil) → 0'
length(cons(x, y)) → s(length(y))
Types:
ge :: 0':s → 0':s → true:false:eq
0' :: 0':s
true :: true:false:eq
s :: 0':s → 0':s
false :: true:false:eq
rev :: nil:cons → nil:cons
if :: nil:cons → true:false:eq → nil:cons → 0':s → 0':s → nil:cons
eq :: 0':s → 0':s → true:false:eq
length :: nil:cons → 0':s
nil :: nil:cons
help :: 0':s → 0':s → nil:cons → nil:cons → nil:cons
cons :: a → nil:cons → nil:cons
append :: nil:cons → nil:cons → nil:cons
hole_true:false:eq1_0 :: true:false:eq
hole_0':s2_0 :: 0':s
hole_nil:cons3_0 :: nil:cons
hole_a4_0 :: a
gen_0':s5_0 :: Nat → 0':s
gen_nil:cons6_0 :: Nat → nil:cons
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
ge,
length,
help,
appendThey will be analysed ascendingly in the following order:
ge < help
append < help
(6) Obligation:
TRS:
Rules:
ge(
x,
0') →
truege(
0',
s(
y)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
rev(
x) →
if(
x,
eq(
0',
length(
x)),
nil,
0',
length(
x))
if(
x,
true,
z,
c,
l) →
zif(
x,
false,
z,
c,
l) →
help(
s(
c),
l,
x,
z)
help(
c,
l,
cons(
x,
y),
z) →
if(
append(
y,
cons(
x,
nil)),
ge(
c,
l),
cons(
x,
z),
c,
l)
append(
nil,
y) →
yappend(
cons(
x,
y),
z) →
cons(
x,
append(
y,
z))
length(
nil) →
0'length(
cons(
x,
y)) →
s(
length(
y))
Types:
ge :: 0':s → 0':s → true:false:eq
0' :: 0':s
true :: true:false:eq
s :: 0':s → 0':s
false :: true:false:eq
rev :: nil:cons → nil:cons
if :: nil:cons → true:false:eq → nil:cons → 0':s → 0':s → nil:cons
eq :: 0':s → 0':s → true:false:eq
length :: nil:cons → 0':s
nil :: nil:cons
help :: 0':s → 0':s → nil:cons → nil:cons → nil:cons
cons :: a → nil:cons → nil:cons
append :: nil:cons → nil:cons → nil:cons
hole_true:false:eq1_0 :: true:false:eq
hole_0':s2_0 :: 0':s
hole_nil:cons3_0 :: nil:cons
hole_a4_0 :: a
gen_0':s5_0 :: Nat → 0':s
gen_nil:cons6_0 :: Nat → nil:cons
Generator Equations:
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
gen_nil:cons6_0(0) ⇔ nil
gen_nil:cons6_0(+(x, 1)) ⇔ cons(hole_a4_0, gen_nil:cons6_0(x))
The following defined symbols remain to be analysed:
ge, length, help, append
They will be analysed ascendingly in the following order:
ge < help
append < help
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
ge(
gen_0':s5_0(
n8_0),
gen_0':s5_0(
n8_0)) →
true, rt ∈ Ω(1 + n8
0)
Induction Base:
ge(gen_0':s5_0(0), gen_0':s5_0(0)) →RΩ(1)
true
Induction Step:
ge(gen_0':s5_0(+(n8_0, 1)), gen_0':s5_0(+(n8_0, 1))) →RΩ(1)
ge(gen_0':s5_0(n8_0), gen_0':s5_0(n8_0)) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
ge(
x,
0') →
truege(
0',
s(
y)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
rev(
x) →
if(
x,
eq(
0',
length(
x)),
nil,
0',
length(
x))
if(
x,
true,
z,
c,
l) →
zif(
x,
false,
z,
c,
l) →
help(
s(
c),
l,
x,
z)
help(
c,
l,
cons(
x,
y),
z) →
if(
append(
y,
cons(
x,
nil)),
ge(
c,
l),
cons(
x,
z),
c,
l)
append(
nil,
y) →
yappend(
cons(
x,
y),
z) →
cons(
x,
append(
y,
z))
length(
nil) →
0'length(
cons(
x,
y)) →
s(
length(
y))
Types:
ge :: 0':s → 0':s → true:false:eq
0' :: 0':s
true :: true:false:eq
s :: 0':s → 0':s
false :: true:false:eq
rev :: nil:cons → nil:cons
if :: nil:cons → true:false:eq → nil:cons → 0':s → 0':s → nil:cons
eq :: 0':s → 0':s → true:false:eq
length :: nil:cons → 0':s
nil :: nil:cons
help :: 0':s → 0':s → nil:cons → nil:cons → nil:cons
cons :: a → nil:cons → nil:cons
append :: nil:cons → nil:cons → nil:cons
hole_true:false:eq1_0 :: true:false:eq
hole_0':s2_0 :: 0':s
hole_nil:cons3_0 :: nil:cons
hole_a4_0 :: a
gen_0':s5_0 :: Nat → 0':s
gen_nil:cons6_0 :: Nat → nil:cons
Lemmas:
ge(gen_0':s5_0(n8_0), gen_0':s5_0(n8_0)) → true, rt ∈ Ω(1 + n80)
Generator Equations:
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
gen_nil:cons6_0(0) ⇔ nil
gen_nil:cons6_0(+(x, 1)) ⇔ cons(hole_a4_0, gen_nil:cons6_0(x))
The following defined symbols remain to be analysed:
length, help, append
They will be analysed ascendingly in the following order:
append < help
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
length(
gen_nil:cons6_0(
n289_0)) →
gen_0':s5_0(
n289_0), rt ∈ Ω(1 + n289
0)
Induction Base:
length(gen_nil:cons6_0(0)) →RΩ(1)
0'
Induction Step:
length(gen_nil:cons6_0(+(n289_0, 1))) →RΩ(1)
s(length(gen_nil:cons6_0(n289_0))) →IH
s(gen_0':s5_0(c290_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
TRS:
Rules:
ge(
x,
0') →
truege(
0',
s(
y)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
rev(
x) →
if(
x,
eq(
0',
length(
x)),
nil,
0',
length(
x))
if(
x,
true,
z,
c,
l) →
zif(
x,
false,
z,
c,
l) →
help(
s(
c),
l,
x,
z)
help(
c,
l,
cons(
x,
y),
z) →
if(
append(
y,
cons(
x,
nil)),
ge(
c,
l),
cons(
x,
z),
c,
l)
append(
nil,
y) →
yappend(
cons(
x,
y),
z) →
cons(
x,
append(
y,
z))
length(
nil) →
0'length(
cons(
x,
y)) →
s(
length(
y))
Types:
ge :: 0':s → 0':s → true:false:eq
0' :: 0':s
true :: true:false:eq
s :: 0':s → 0':s
false :: true:false:eq
rev :: nil:cons → nil:cons
if :: nil:cons → true:false:eq → nil:cons → 0':s → 0':s → nil:cons
eq :: 0':s → 0':s → true:false:eq
length :: nil:cons → 0':s
nil :: nil:cons
help :: 0':s → 0':s → nil:cons → nil:cons → nil:cons
cons :: a → nil:cons → nil:cons
append :: nil:cons → nil:cons → nil:cons
hole_true:false:eq1_0 :: true:false:eq
hole_0':s2_0 :: 0':s
hole_nil:cons3_0 :: nil:cons
hole_a4_0 :: a
gen_0':s5_0 :: Nat → 0':s
gen_nil:cons6_0 :: Nat → nil:cons
Lemmas:
ge(gen_0':s5_0(n8_0), gen_0':s5_0(n8_0)) → true, rt ∈ Ω(1 + n80)
length(gen_nil:cons6_0(n289_0)) → gen_0':s5_0(n289_0), rt ∈ Ω(1 + n2890)
Generator Equations:
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
gen_nil:cons6_0(0) ⇔ nil
gen_nil:cons6_0(+(x, 1)) ⇔ cons(hole_a4_0, gen_nil:cons6_0(x))
The following defined symbols remain to be analysed:
append, help
They will be analysed ascendingly in the following order:
append < help
(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
append(
gen_nil:cons6_0(
n509_0),
gen_nil:cons6_0(
b)) →
gen_nil:cons6_0(
+(
n509_0,
b)), rt ∈ Ω(1 + n509
0)
Induction Base:
append(gen_nil:cons6_0(0), gen_nil:cons6_0(b)) →RΩ(1)
gen_nil:cons6_0(b)
Induction Step:
append(gen_nil:cons6_0(+(n509_0, 1)), gen_nil:cons6_0(b)) →RΩ(1)
cons(hole_a4_0, append(gen_nil:cons6_0(n509_0), gen_nil:cons6_0(b))) →IH
cons(hole_a4_0, gen_nil:cons6_0(+(b, c510_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(14) Complex Obligation (BEST)
(15) Obligation:
TRS:
Rules:
ge(
x,
0') →
truege(
0',
s(
y)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
rev(
x) →
if(
x,
eq(
0',
length(
x)),
nil,
0',
length(
x))
if(
x,
true,
z,
c,
l) →
zif(
x,
false,
z,
c,
l) →
help(
s(
c),
l,
x,
z)
help(
c,
l,
cons(
x,
y),
z) →
if(
append(
y,
cons(
x,
nil)),
ge(
c,
l),
cons(
x,
z),
c,
l)
append(
nil,
y) →
yappend(
cons(
x,
y),
z) →
cons(
x,
append(
y,
z))
length(
nil) →
0'length(
cons(
x,
y)) →
s(
length(
y))
Types:
ge :: 0':s → 0':s → true:false:eq
0' :: 0':s
true :: true:false:eq
s :: 0':s → 0':s
false :: true:false:eq
rev :: nil:cons → nil:cons
if :: nil:cons → true:false:eq → nil:cons → 0':s → 0':s → nil:cons
eq :: 0':s → 0':s → true:false:eq
length :: nil:cons → 0':s
nil :: nil:cons
help :: 0':s → 0':s → nil:cons → nil:cons → nil:cons
cons :: a → nil:cons → nil:cons
append :: nil:cons → nil:cons → nil:cons
hole_true:false:eq1_0 :: true:false:eq
hole_0':s2_0 :: 0':s
hole_nil:cons3_0 :: nil:cons
hole_a4_0 :: a
gen_0':s5_0 :: Nat → 0':s
gen_nil:cons6_0 :: Nat → nil:cons
Lemmas:
ge(gen_0':s5_0(n8_0), gen_0':s5_0(n8_0)) → true, rt ∈ Ω(1 + n80)
length(gen_nil:cons6_0(n289_0)) → gen_0':s5_0(n289_0), rt ∈ Ω(1 + n2890)
append(gen_nil:cons6_0(n509_0), gen_nil:cons6_0(b)) → gen_nil:cons6_0(+(n509_0, b)), rt ∈ Ω(1 + n5090)
Generator Equations:
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
gen_nil:cons6_0(0) ⇔ nil
gen_nil:cons6_0(+(x, 1)) ⇔ cons(hole_a4_0, gen_nil:cons6_0(x))
The following defined symbols remain to be analysed:
help
(16) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol help.
(17) Obligation:
TRS:
Rules:
ge(
x,
0') →
truege(
0',
s(
y)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
rev(
x) →
if(
x,
eq(
0',
length(
x)),
nil,
0',
length(
x))
if(
x,
true,
z,
c,
l) →
zif(
x,
false,
z,
c,
l) →
help(
s(
c),
l,
x,
z)
help(
c,
l,
cons(
x,
y),
z) →
if(
append(
y,
cons(
x,
nil)),
ge(
c,
l),
cons(
x,
z),
c,
l)
append(
nil,
y) →
yappend(
cons(
x,
y),
z) →
cons(
x,
append(
y,
z))
length(
nil) →
0'length(
cons(
x,
y)) →
s(
length(
y))
Types:
ge :: 0':s → 0':s → true:false:eq
0' :: 0':s
true :: true:false:eq
s :: 0':s → 0':s
false :: true:false:eq
rev :: nil:cons → nil:cons
if :: nil:cons → true:false:eq → nil:cons → 0':s → 0':s → nil:cons
eq :: 0':s → 0':s → true:false:eq
length :: nil:cons → 0':s
nil :: nil:cons
help :: 0':s → 0':s → nil:cons → nil:cons → nil:cons
cons :: a → nil:cons → nil:cons
append :: nil:cons → nil:cons → nil:cons
hole_true:false:eq1_0 :: true:false:eq
hole_0':s2_0 :: 0':s
hole_nil:cons3_0 :: nil:cons
hole_a4_0 :: a
gen_0':s5_0 :: Nat → 0':s
gen_nil:cons6_0 :: Nat → nil:cons
Lemmas:
ge(gen_0':s5_0(n8_0), gen_0':s5_0(n8_0)) → true, rt ∈ Ω(1 + n80)
length(gen_nil:cons6_0(n289_0)) → gen_0':s5_0(n289_0), rt ∈ Ω(1 + n2890)
append(gen_nil:cons6_0(n509_0), gen_nil:cons6_0(b)) → gen_nil:cons6_0(+(n509_0, b)), rt ∈ Ω(1 + n5090)
Generator Equations:
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
gen_nil:cons6_0(0) ⇔ nil
gen_nil:cons6_0(+(x, 1)) ⇔ cons(hole_a4_0, gen_nil:cons6_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
ge(gen_0':s5_0(n8_0), gen_0':s5_0(n8_0)) → true, rt ∈ Ω(1 + n80)
(19) BOUNDS(n^1, INF)
(20) Obligation:
TRS:
Rules:
ge(
x,
0') →
truege(
0',
s(
y)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
rev(
x) →
if(
x,
eq(
0',
length(
x)),
nil,
0',
length(
x))
if(
x,
true,
z,
c,
l) →
zif(
x,
false,
z,
c,
l) →
help(
s(
c),
l,
x,
z)
help(
c,
l,
cons(
x,
y),
z) →
if(
append(
y,
cons(
x,
nil)),
ge(
c,
l),
cons(
x,
z),
c,
l)
append(
nil,
y) →
yappend(
cons(
x,
y),
z) →
cons(
x,
append(
y,
z))
length(
nil) →
0'length(
cons(
x,
y)) →
s(
length(
y))
Types:
ge :: 0':s → 0':s → true:false:eq
0' :: 0':s
true :: true:false:eq
s :: 0':s → 0':s
false :: true:false:eq
rev :: nil:cons → nil:cons
if :: nil:cons → true:false:eq → nil:cons → 0':s → 0':s → nil:cons
eq :: 0':s → 0':s → true:false:eq
length :: nil:cons → 0':s
nil :: nil:cons
help :: 0':s → 0':s → nil:cons → nil:cons → nil:cons
cons :: a → nil:cons → nil:cons
append :: nil:cons → nil:cons → nil:cons
hole_true:false:eq1_0 :: true:false:eq
hole_0':s2_0 :: 0':s
hole_nil:cons3_0 :: nil:cons
hole_a4_0 :: a
gen_0':s5_0 :: Nat → 0':s
gen_nil:cons6_0 :: Nat → nil:cons
Lemmas:
ge(gen_0':s5_0(n8_0), gen_0':s5_0(n8_0)) → true, rt ∈ Ω(1 + n80)
length(gen_nil:cons6_0(n289_0)) → gen_0':s5_0(n289_0), rt ∈ Ω(1 + n2890)
append(gen_nil:cons6_0(n509_0), gen_nil:cons6_0(b)) → gen_nil:cons6_0(+(n509_0, b)), rt ∈ Ω(1 + n5090)
Generator Equations:
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
gen_nil:cons6_0(0) ⇔ nil
gen_nil:cons6_0(+(x, 1)) ⇔ cons(hole_a4_0, gen_nil:cons6_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
ge(gen_0':s5_0(n8_0), gen_0':s5_0(n8_0)) → true, rt ∈ Ω(1 + n80)
(22) BOUNDS(n^1, INF)
(23) Obligation:
TRS:
Rules:
ge(
x,
0') →
truege(
0',
s(
y)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
rev(
x) →
if(
x,
eq(
0',
length(
x)),
nil,
0',
length(
x))
if(
x,
true,
z,
c,
l) →
zif(
x,
false,
z,
c,
l) →
help(
s(
c),
l,
x,
z)
help(
c,
l,
cons(
x,
y),
z) →
if(
append(
y,
cons(
x,
nil)),
ge(
c,
l),
cons(
x,
z),
c,
l)
append(
nil,
y) →
yappend(
cons(
x,
y),
z) →
cons(
x,
append(
y,
z))
length(
nil) →
0'length(
cons(
x,
y)) →
s(
length(
y))
Types:
ge :: 0':s → 0':s → true:false:eq
0' :: 0':s
true :: true:false:eq
s :: 0':s → 0':s
false :: true:false:eq
rev :: nil:cons → nil:cons
if :: nil:cons → true:false:eq → nil:cons → 0':s → 0':s → nil:cons
eq :: 0':s → 0':s → true:false:eq
length :: nil:cons → 0':s
nil :: nil:cons
help :: 0':s → 0':s → nil:cons → nil:cons → nil:cons
cons :: a → nil:cons → nil:cons
append :: nil:cons → nil:cons → nil:cons
hole_true:false:eq1_0 :: true:false:eq
hole_0':s2_0 :: 0':s
hole_nil:cons3_0 :: nil:cons
hole_a4_0 :: a
gen_0':s5_0 :: Nat → 0':s
gen_nil:cons6_0 :: Nat → nil:cons
Lemmas:
ge(gen_0':s5_0(n8_0), gen_0':s5_0(n8_0)) → true, rt ∈ Ω(1 + n80)
length(gen_nil:cons6_0(n289_0)) → gen_0':s5_0(n289_0), rt ∈ Ω(1 + n2890)
Generator Equations:
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
gen_nil:cons6_0(0) ⇔ nil
gen_nil:cons6_0(+(x, 1)) ⇔ cons(hole_a4_0, gen_nil:cons6_0(x))
No more defined symbols left to analyse.
(24) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
ge(gen_0':s5_0(n8_0), gen_0':s5_0(n8_0)) → true, rt ∈ Ω(1 + n80)
(25) BOUNDS(n^1, INF)
(26) Obligation:
TRS:
Rules:
ge(
x,
0') →
truege(
0',
s(
y)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
rev(
x) →
if(
x,
eq(
0',
length(
x)),
nil,
0',
length(
x))
if(
x,
true,
z,
c,
l) →
zif(
x,
false,
z,
c,
l) →
help(
s(
c),
l,
x,
z)
help(
c,
l,
cons(
x,
y),
z) →
if(
append(
y,
cons(
x,
nil)),
ge(
c,
l),
cons(
x,
z),
c,
l)
append(
nil,
y) →
yappend(
cons(
x,
y),
z) →
cons(
x,
append(
y,
z))
length(
nil) →
0'length(
cons(
x,
y)) →
s(
length(
y))
Types:
ge :: 0':s → 0':s → true:false:eq
0' :: 0':s
true :: true:false:eq
s :: 0':s → 0':s
false :: true:false:eq
rev :: nil:cons → nil:cons
if :: nil:cons → true:false:eq → nil:cons → 0':s → 0':s → nil:cons
eq :: 0':s → 0':s → true:false:eq
length :: nil:cons → 0':s
nil :: nil:cons
help :: 0':s → 0':s → nil:cons → nil:cons → nil:cons
cons :: a → nil:cons → nil:cons
append :: nil:cons → nil:cons → nil:cons
hole_true:false:eq1_0 :: true:false:eq
hole_0':s2_0 :: 0':s
hole_nil:cons3_0 :: nil:cons
hole_a4_0 :: a
gen_0':s5_0 :: Nat → 0':s
gen_nil:cons6_0 :: Nat → nil:cons
Lemmas:
ge(gen_0':s5_0(n8_0), gen_0':s5_0(n8_0)) → true, rt ∈ Ω(1 + n80)
Generator Equations:
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
gen_nil:cons6_0(0) ⇔ nil
gen_nil:cons6_0(+(x, 1)) ⇔ cons(hole_a4_0, gen_nil:cons6_0(x))
No more defined symbols left to analyse.
(27) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
ge(gen_0':s5_0(n8_0), gen_0':s5_0(n8_0)) → true, rt ∈ Ω(1 + n80)
(28) BOUNDS(n^1, INF)